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Abstract—Reinforcement Learning (RL) is mainly inspired by
studies on animal and human learning. However, RL methods
suffer higher regret in comparison to natural learners in real-
world tasks. This is partly due to the lack of social learning in RL
agents. We propose a social learning method for improving the
performance of RL agents for the multi-armed bandit setting.
The social agent observes other agents’ decisions, while their
rewards are private. The agent uses a preference-based method,
similar to the policy gradient learning method, to find if there are
any agents in the heterogeneous society worth learning from their
policies to improve their performance. The heterogeneity is the
result of diversity in learning algorithms, utility functions, and
expertise. We compare our method with state-of-the-art studies
and demonstrate that it results in higher performance in most
scenarios. We also show that performance improvement increases
with the problem complexity and is inversely correlated with the
population of unrelated agents.

Index Terms—Reinforcement Learning; Social Learning;
Multi-armed Bandit

I. INTRODUCTION

SOCIAL learning, in which interactions and observations
are used to learn from other agents in society, helps

humans and animals learn complex behaviors faster and more
efficiently. Both humans and animals rely on social learning
when individual learning is difficult for them [1]–[3]. It is
noted that humans owe their evolution to the ability to learn
from their society [4]–[11]. The complexity of human skills
could not have been achieved if they had to rely only on
individual learning in order to identify solutions for everyday
decision-making problems. An isolated learner must invest
sufficient energy and time to explore the available options and
may thus encounter unexpected negative outcomes, making
individual learning slow and costly [12].

Reinforcement Learning (RL) is one of the most popular
machine learning methods [13] and has evolved as one of
the learning tools alongside social learning in diverse soci-
eties. However, the fact that RL is used by socially situated
creatures in nature is largely ignored. Therefore, RL as a
standalone learning method, even though is highly effective
and is improved through various methods such as intrinsic
motivations [14]–[19], transfer learning [20] or sub-spacing
[21], has some drawbacks. For instance, it suffers from expo-
nentially increased regret in high dimensional state space, has
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difficulties in adapting online to new environments, and is slow
in producing near-optimal results [1], [22]. Considering the
fact that RL agents could address the mentioned complications
through learning from social cues [23], here we aim to use
social learning to import social aspect to individual RL in
multi-armed bandit settings.

In this paper, we investigate the importance of using social
cues in speeding the k-armed bandit problem learning. We
first introduce a preference-based method for the agent to
evaluate the level of expertise of other agents interacting with
the environment and its relevance to those agents, in addition
to their information’s importance for speeding the agent’s
learning. We also show that the social agent can evaluate other
agents properly even in a populated society and if an agent
becomes more or less informative for the social agent, the
social agent is able to detect and change its preference to that
agent. After continuously evaluating the society, if the social
agent finds another agent informative, it will learn from that
agent by selecting it for an iteration in order to find the optimal
solution faster. To prevent the agent from becoming totally
reliant on the other agents, the agent calculates its preference
for its own internal learner and decides if other agents are more
informative to be selected or if its internal learner has mastered
the skills and needs no effort in selecting others. We analyze
the influence of problem complexity, society population size,
and the quality of information the society has for the agent on
the social learner’s performance.

In order to state realistic applications of our method, we
need to say that nowadays, various bandit settings are widely
used in different aspects of marketing, such as optimizing ad
placement, or dynamic pricing [24], [25]. The problem we
study arises naturally due to the preserving privacy of users.
For example, we can consider an international online web
store that uses dynamic pricing to automatically determine
the best price for its products. However, due to laws such as
the General Data Protection Regulation (GDPR), or different
economic situations of different countries, the web store can
not use the whole data gathered from customers. It also can
create different agents for each part that are able to observe the
actions (pricing) of other agents but not the rewards (whether
buying the products or not).

We compare our method to the literature [26] and [27] and
show that the society in which our agent learns, not only is
assumed to have a realistic number of agents (a populated
society), but also has agents with a variety of goals and levels
of expertise, and not just experts and teachers. In addition,
we assume that the social agent, realistically, has no access to
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other information about other agents of the society, such as
rewards received by other agents. Thus, our proposed method
contributes to learning more efficiently in a realistic society
by evaluating other agents based on their internal goals and
using informative ones, if available, in order to improve their
performance. Below, after discussing the literature, we state
our assumptions and preliminaries. Following that, we propose
our method and the experimental results. In the end, we discuss
the conclusion and future work.

II. RELATED WORKS

There are several drawbacks to using Reinforcement learn-
ing, such as its slowness in producing near-optimal results,
suffering from exponentially increased regret in tasks with
high-dimensional state space, and having difficulties in adapt-
ing online to new environments. Different Social Learning
methods can help Reinforcement Learning to address such
problems at some level. For example, human guidance can
be used in order to speed up learning. However, to achieve
this, a human needs to manually specify whether a performed
action is correct or incorrect or needs to rank available
solutions based on their performance [28]–[30] that makes
this method not scalable. Other Social Learning methods used
in order to improve Reinforcement Learning and Machine
Learning methods are Imitation learning, Vicarious learning,
and Observational learning.

Imitation Learning [31] and Observational Learning (also
known as Apprenticeship Learning [32]) are both the most
used methods in robot learning that is assumed to be a
complex problem [33]–[37]. In [38] and [39] the focus is to
use Observational Learning in order to improve the agent’s
performance. In [39] the authors focus on using the observed
behavior of a teacher combined with intrinsic motivation to
accelerate learning. Similarly, in [38] a deep Reinforcement
Learning method combined with memory is used by the agent
in order to learn new tasks only through reward signals given
by the environment and if it existed, the observed behavior of
another agent (named teacher). Through both Observational
Learning and Imitation Learning, the agent can speed up its
learning by observing a teacher with the goal of teaching the
agent, or an expert agent that is supposed to have relevant
information for the agent’s learning.

One limitation of Imitation and Observational Learning is
that other agents associating with the agent are considered
to be experts or have relevant information to what the agent
needs to learn or some relevant demonstrations are manually
obtained. These are not available or are time-consuming to
obtain for many tasks especially when the task or environment
is novel [22]. In addition, when using Imitation Learning, the
agent is forced to follow the behavior of the expert and most
of the time duplicate it exactly as it is, so further development
is hard to achieve. In contrast to Imitation and Observational
Learning, our proposed method needs no expert or teacher in
the environment and is not limited to their knowledge and
only uses their selected actions if they are considered to be
informative by the social agent.

In [40], the authors designed two social learning config-
urations, to check whether there is a correlation between

depressive symptoms and reward learning in a social context.
In the first one, the participant just can see the choice of
the demonstrator (i.e. imitation), however, in the second one,
the participant can see the choice and the outcome of the
demonstrator (i.e. Vicarious Learning). Vicarious Learning is
similar to Observational and Imitation Learning with the dif-
ference that the agent is assumed to have access to both actions
and rewards of other agents which is not available in many
realistic cases, especially for novel tasks. Humans and other
species do not communicate their received internal rewards,
such as observing others being praised for their actions, that
we understand the consequences of others’ actions. Thus, in
contrast to Vicarious Learning, we assume that the social agent
has no access to other agents’ received rewards.

The Social Learning setup we consider in this paper is
different from Vicarious, Observational, and Imitation Learn-
ing in the sense that different agents in society have various
goals which make them either good sources of information
for the learner or useless sources. It is also important to note
that multi-agent Reinforcement Learning can be considered as
a form of social learning. Some multi-agent Reinforcement
Learning methods use a social intrinsic motivation as a means
to improve performance [41], [42]. However, in multi-agent
problems agents have the same goal to achieve and most of
them need to share private information through communication
such as rewards, observations, or even learning parameters
[43]–[46].

Our work is mostly related to [26], [27], [12] and [23]. An
online social bandit learning algorithm is introduced in [26]
and [27] that use methods inspired from the Upper Confidence
Bound (UCB) learning method in order to benefit the decisions
of other agents. In [23], a model-based auxiliary loss is added
to model-free deep RL to be able to train agents that are
able to use cues from expert agents in order to learn new
tasks. In [12], the authors compared 4 computational models
of imitation in reinforcement learning that are assumed to be
used by humans through conducting a social reinforcement
learning task. The results showed that the Value Shaping (VS)
method can represent imitation better than the other models
and self-value guides imitation rate.

Compared to [26] and [23] that assumes other agents to
have relevant information, we assume that other agents might
be totally irrelevant or misleading for the social agent. In
contrast to our method, the authors of [12] designed their
hypotheses for a 2-armed bandit environment, with binary
rewards, and just one demonstrator. In addition [12], [27] and
[23] all consider a limited number of other agents, while we
consider a populated society. In contrast to previous works,
our setup includes a populated society with a variety of agents
with different levels of expertise and goals, without the need
for any private information except for selected actions, such
as reward, from other agents.

III. PROBLEM STATEMENT AND ASSUMPTIONS

We study the stochastic bandit problem where A denotes the
set of available actions for all agents and |A| is the number of
actions. This setting is also known as k-armed bandits. Each
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action a ϵ A corresponds to an unknown reward distribution
with expected value q∗(a). Apart from our social agent, we
have N other agents in the problem. All the agents select an
action at ϵA at each trial t and observe reward rt ∼ ν(q∗(at)),
where ν(q∗(at)) is a probability distribution of reward signal
for arm at. Only the social agent has the ability to observe the
actions selected by other agents at each trial t, ai,t, without
any other extra information (e.g. reward). Each agent seeks to
reach its own internal goal. The goal of the social agent is to
maximize its expected reward:

E[Rt] =

k∑
a=1

πt(a)q∗(a). (1)

We did not assume that all agents have the same goal or level
of expertise and thus, the other agents do not have a purpose of
teaching our agent. Pseudo-regret is considered as a measure
for evaluating and comparing algorithms. The pseudo-regret
over T trials becomes:

RT = T × q∗(a∗)−
T∑

t=1

Rt, (2)

here q∗(a∗) = maxa∈A q∗(a), and Rt is the reward signal
which is received at trial t. In the following, the term ”regret”
will be used to refer to ”pseudo-regret”.

IV. PRELIMINARIES

In this section, we explain the agent’s individual learning
method, which is used by our social agent. In the following, we
provide an overview of the gradient preference-based method
that is used in our method to select agents.

A. Agent individual learning method

The individual learning method of the social agent can be
any learning method including UCB [24], Thompson sampling
[47], etc. Our proposed method can operate independently
of the choice of the individual learning method. The chosen
individual learning method of our base work is decaying ϵ-
greedy, which is one of the simplest Reinforcement Learning
methods, as its internal learner method. This method balances
exploration and exploitation by taking a random action with
probability ϵ, and taking the best-known action thus far oth-
erwise [13]. Considering the fact that exploration is needed at
the beginning of the learning, the value of ϵ is better not to be
constant and decay over time [48]. Thus, the internal learner
of the social agent selects a random action with the probability
of:

p <
1

1 + t/N
(3)

where t is the number of trials the agent has been learning
and N is the number of actions the environment has.

B. Gradient preference-based method

In order to solve an k-armed bandit problem, a numerical
preference for each action (initially zero), showing that the

action’s relative preference over other actions can be calcu-
lated. Then, actions are selected with probabilities according
to Gibbs or Boltzmann distribution.

Pr(At = a) =
eH(a)∑

allactionb(e
H(b))

= πt(At) (4)

where Pr(At = a) shows the probability of selecting action
a at trial t and H(a) shows the preference of action a. After
receiving the reward Rt through performing action At, the
preferences are updated based on the stochastic gradient ascent
rule as follows:

Ht+1(At) = Ht(At) + α(Rt − R̂t)(1− πt(At))

Ht+1(a) = Ht(a)− α(Rt − R̂t)πt(a); ∀a ̸= At,
(5)

where R̂t is the mean reward of all received rewards until trial
t (R̂t = R̂t +

1
n (Rt − R̂t)) and α is constant. This formula

increases the preference of the selected action and decreases
the preference of other actions if the selected actions result
in a reward better than the mean of rewards received, and
otherwise decreases the preference of the selected action and
increase others [13].

V. PROPOSED METHOD

In this paper, we introduce a new method to use the benefits
of social learning in reinforcement learning. The social agent
of the proposed method learns in a society of different agents
and selects action based on two methods: 1) selecting action
based on the agent’s internal learning method, and 2) selecting
action learned from other agents. By learning from other
agents we mean to do the action that the other agent has
performed frequently.

Knowing that other agents in the environment might have
different goals and utility functions and different levels
of expertise as well as biases, the social agent needs a
method to evaluate them in order to find if other agents
are suitable to learn from. Considering that the social agent
can only observe actions that other agents perform, it is a
challenge to define a measure to detect if any appropriate
agent is in the society, select the most informative one to
learn from, and integrate the observed information and its
own for decision making. Accordingly, we can consider
the problem of who to learn from as a multi-armed bandit
problem. Inspired by the gradient preference-based learning
method, the social agent assigns a preference to all agents
including itself, and then uses these calculated preferences
while selecting which agent to learn from according to
Gibbs or Boltzmann distributions (see (4)). After selecting
an agent to learn from, the social agent performs that
agent’s most frequently performed action that was observed
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by the social and updates preferences similar to (5) as follows:

Ht+1(Agenti) = Ht(Agenti)

+ α(Rt − R̂t)× (1− πst(Agenti));

for all Agenti with same selected action ,

Ht+1(Agentj) = Ht(Agentj)

− α(Rt − R̂t)× πst(Agentj);

for all Agentj with different selected action
(6)

Here R̂t is the mean of rewards received from performing
actions selected through either selecting others or the agent’s
internal learner, Rt is the received reward from the performing
action, α is constant, and πst(Agenti) is the probability of
selecting Agenti to learn from, based on (1). To direct our
learning from others, we have chosen policy-gradient-based
learning methods because of the generalizability of them to
different RL tasks such as continuous and MDP settings.
Additionally, these methods do not require excess hyperpa-
rameters to be determined during the learning, from which
they use gradients to direct their learning. . The derivation of
the formula, (6), is explained in appendix A.

Algorithm 1 shows the core procedure of the social agent’s
learning method. First, the agent selects an action to perform
by deciding whether to follow its internal learner or one agent
from the society and if the latter, which agent is among them
(Line 3). Then, after performing the selected action, it updates
the required parameters. At the end of the trial, the agent
updates its preference, increasing the preference of the selected
agent and all agents with similar last selected action including
its internal learner, if the received reward Ri is greater than the
mean reward, and decreasing the performance of other agents.
Vice versa, if the received reward, Ri is smaller than the mean
reward, the agent decreases the preference of all agents who
had performed the selected action and increases the preference
of others (Line 6).

Algorithm 1 Social Learning
Initialize preferences to zero
for each trial t do

action ← Action Selection {Algorithm 2}
R ← perform action and receive reward
Update Preferences {Algorithm 3}

end for

Algorithm 2 shows the procedure the social agent uses to
select an action. Self-efficacy or the agent’s internal level
of expertise has an important role in observational learning
procedure [49]. Considering that, the social agent needs to
evaluate its Self-efficacy in order to not totally depend on
other agents, the agent also considers itself as an outer agent
and considers the recommended action by its internal learning
method as the action to be performed.

Algorithm 2 Action Selection
for agenti in society do
{Including the social agent}
Pi ← eAgentPreferencei∑

eAgentPreferencej

end for
Agent ← Select agent with probability of Pi {See (1)}
if Another Agent is selected then

Return the most frequent action of Agent
else

Return the action selected through the internal learner
end if

For the sake of sample efficiency and improving perfor-
mance, all agents in the society who performed the social
agent’s selected action in the following trial would be consid-
ered as the selected agent (Algorithm 3, Line 4). Considering
that every bit of information should be used in learning,
if the selected action of the agent’s internal learner is also
the performed action, the preference of agent to its internal
learner also is updated (Algorithm 3, Line 13). Thus, after
performing the selected action and receiving a reward Ri

from the environment, the social agent updates its preference
towards itself and other agents in the society (Algorithm 3,
Line 15 to 22).

Algorithm 3 Update Preferences
Input: A: the performed Action, R: received reward
Initialize agentList to an empty list
for agenti in society do
{Including the social agent}
if last Action Performed by agenti is A then
add agenti to agentList

end if
end for
for agenti in society do
{Update preferences (4)}
if agenti is in agentList then
δH ← α(Rt − R̂t)(1− πt(Agenti))
Ht+1(Agenti)← Ht(Agenti) + δH

else
δH ← α(Rt − R̂t)πt(Agentj)
Ht+1(Agentj)← Ht(Agentj)− δH

end if
end for

VI. EXPERIMENTAL RESULTS

In order to compare our proposed social learner’s perfor-
mance with that of the individual learner, we test multiple
aspects and scenarios. We first test the influence of the size
of the society population and the problem difficulty on the
difference between social and individual learning. After that,
we analyze the influence of society and evaluate our proposed
methods’ ability in finding which agents are better to learn
from. In the end, for further evaluation, we compare our
method to the existing similar methods.

Throughout all of our scenarios, the rewards are from the
Gaussian distribution N(µ, σ2) with σ = 1 and µ randomly
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selected from one decimal point number between −10 and 10,
i.e. {(k − 100)/10|k ∈ [0, 200]}, unless otherwise specified.
For each test case 30 reward sets

{
N(µi, σ

2)|i ∈ [0, 10]
}

are
chosen randomly for each possible K action counts. Each
chosen reward set is tested 10 iterations for 1000 trials. The
reported result is the average result of these 10 randomly
selected reward sets testing for 10 iterations (300 in total).

Other agents in the society are either another learner (here
it uses the Thompson sampling method and we refer it as
the Thompson Learner) or the following manually designed
agents:

• Random agent: always selects an action randomly.
• Worst agent: always selects the worst action.
• Percent agent (P0, δP , Pmax): the action with the most

expected reward is selected with a probability of P0 that
is increased by δP each trial until reaching probability
equal to Pmax.

A. Testing the influence of society’s population and problem
difficulty

Considering that the social agent has the ability to update its
preference to other agents with the same selected action as its
own action, detecting a group of agents who act similarly and
have similar goals, is not hard for our social agent. Thus one
of the most complicated groups of agents for the social agent
to deal with is a group of random agents. Keeping this fact in
mind, in order to evaluate the agent’s performance in societies
with different population sizes, we assume one of the hardest
societies for our social learner that has N+1 agents with N
random agents and only one expert that acts rationally and is
appropriate to learn from. In appendix B, we discuss this topic
in more detail.

Fig. 1 shows the difference between the percent of selecting
the optimal action of social and individual for action size k
equal to 10 and 100 and society of N equal to 10 and 100.
As it is shown, the difference between social and individual
is considerable when we have a small society (N = 10) and a
difficult problem (k = 100) for the individual learner to learn.
In addition, we can observe that when it is harder to find good
agents in society (a populated society with N = 100) and the
problem itself is easy to learn individually (k = 10), using
social learning is not profitable for our agent.

Fig. 2 compares the influence of problem difficulty and
population size in the received reward of the social learner
compared to the individual learner. We can observe that for
an easy problem (k = 10), there is no significant difference
between the reward of the social agent and that of the
individual agent. So, we can conclude that social learning can
be useful when a problem is hard to solve individually, and it
can enhance convergence speed. On the other hand, when the
society is populated (N = 100), the improvement of social
learning compared to individual learning is decreased.

B. Testing the ability to detect better agents

Considering that among appropriate agents to select from in
society some might be better to learn from (because of having
faster learning or other reasons), the agent must have the
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Fig. 1. Difference between percent of selecting the optimal action of social
and individual for four cases of (k = 10, N = 10), (k = 100, N = 10), (k =
10, N = 100), and (k = 100, N = 100).

ability to find better agents among appropriate agents in order
to benefit more from social learning. We use two societies to
test the agent’s ability to detect the fittest agents. Both societies
have four percent agents as well as 100 random agents and
the problem each agent is trying to solve has k = 10 actions.
Table I shows the properties of percent agents of societies 1
and 2.

Fig. 3 shows the probability of the agent to select other
agents) and itself (Algorithm 2, Line 2) per trial during its
learning in societies 1 and 2 (probabilities are uniform at first
and in the figure we only draw one random agent and other 99
are excluded). Agent 0 in society 1 has the fastest learning and
Agent 1 is the second fastest and reaches 100% of selecting the
best action at trial 200. As it is shown in Fig. 3 at the beginning
the social agent was able to detect Agent 0 , which is the best
and suddenly, about trial 200 increases its selection probability
to Agent 1 and decreases the probability of selecting agent 0
that it now acts randomly for 20% of times. In addition, the
selection probability or preference of the agent to Agent 3, as
expected, was decreased to a probability near random agents
after trial 90. Agent 2, which has the slowest learning, reaches
80% of selecting the best action at trial 700 and we can see that
the agent was able to increase its preference towards Agent
2 around trial 700. In society 2, the best agent to select after
trial 600 is Agent 2 because of having no Pmax compared to
the other three agents. As is shown in Fig. 3 the agent was
able to detect this fact and increase its selection probability
toward Agent 2 after trial 600. Agent 1 is the second best
agent to select (higher Pmax and fast learning) and we can
see that the agent was able to detect that as well but after trial
600 the agent was able to detect that its learner and Agent 2
are now better than Agent 1 and it should change its selection
probability according to their changes.

C. Comparing to other methods

In order to compare our method to [27], we test the
performance of our social agent and OUCB agent with two
parameters β1 and β2. Fig. 4 shows the regret of our agent
and OUCB agent for a problem with k = 10 and a society
with one learner. We can observe that our agent outperforms
the OUCB in both configurations. In addition, in contrast to
our method, it is stated in the paper that OUCB’s performance
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(a) (b) (c) (d)
Fig. 2. Comparing reward of social and individual for four cases of (a) k = 10, N = 10, (b) k = 100, N = 10, (c) k = 10, N = 100, and (d) k = 100, N =
100.
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Fig. 3. (a) Selecting probability per trial of social agent for a society with four different percent agents and 100 random agents. (b) Selecting probability per
trial of social agent for a society with four different percent agents and 100 random agents.

TABLE I
INDIVIDUAL AND SOCIAL LEARNER P-VALUE WHILE LEARNING A TASK

WITH ACTIONS EQUAL TO 8, 32, AND 100

Society Agent id P0 (%) δP (%) Pmax (%)
1 0 0 1 80

1 0 0.5 100
2 10 0.1 100
3 90 -1 100

2 0 10 1 40
1 0 0.5 60
2 0 0.1 100
3 30 0.01 50

highly depends on β1 and β2 and they need to be tuned.
Fig. 5 shows the regret of our agent and OUCB agent for

a problem with k = 10 and a society of 100 random agents
and one learner. Compared to our method, OUCB is better
when we have many random agents and the problem is easy
(k = 10). The reason for that is in the fact that the frequency of
all actions in a large group of random agents (that is considered
by OUCB) are equal and as a result random agents do not
decrease the performance of OUCB. Thus, if we have an agent
that selects the best action for just a few percent more than
a random agent, the OUCB algorithm will find the optimal
action more easily compared to our method. However, we also
need to note that our method works better compared to OUCB
when the problem is hard to solve. Fig. 6 shows our regret
compared to OUCB’s for a problem with k = 100, n = 100
random agents and one learner.
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Fig. 4. Our social agent’s regret compared to OUCB’s for a problem with k
= 10 one learner

VII. CONCLUSION

In this paper, we investigate the importance of using social
cues in speeding the k-armed bandit problem learning. We
consider a realistic case that the agent only can see actions per-
formed by other agents and has access to no other information.
We propose a method similar to the gradient preference-based
learning method to evaluate other agents in the society and find
if there are agents worth learning from. Using a multi-armed
bandit analogy, we examined the problem of evaluating other
agents to learn from them. By learning from we mean using
that agent’s most frequent action to improve our performance.

We analyze the agent’s preference and ability to evaluate
other agents through testing the agent in a variety of so-
cieties. We assume cases where there are multiple experts
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Fig. 5. Our social agent’s regret compared to OUCB’s for a problem with
k = 10 and society with N = 100 random and one learner
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Fig. 6. Our social agent’s regret compared to OUCB’s for a problem with
k = 100 and society with N = 100 random and one learner

with different levels of expertise in society. We show that
the agent was able to find better agents among appropriate
agents to learn from. We also show that the performance of
the social learning agent was improved considerably compared
to the individual learner when the problem is hard to learn
individually. We further test our method by comparing adding
social learning to other individual learners. As a result we
conclude that social learning improves individual learning
especially when we have a complex problem. For future
work we can apply surprise/novelty signals to extend social
learning in non-stationary environments. The social learning
method can also be applied to MDP problems to learn complex
behavior in long-horizon tasks. Furthermore, it can be used to
build better learning agents with safer exploration phases. We
did a sensitivity analysis between our method and OUCB in
appendix C.

APPENDIX A
STOCHASTIC GRADIENT ASCENT

Gradient policy algorithms parametrize policy functions and
direct them toward gradient direction. In order to do this,
we must first define the objective function that we want to
maximize. It can be defined as follows :

E[Rt] =

N∑
i=1

πst(i)

k∑
a=1

π̂i,t(a)q∗(a), (7)

where in this formula Rt is instant reward at trial t, N
is number of agents in the environment(include ourself), k is

number of actions, and q∗(a) is the mean value of reward
distribution of action a. Now we should define π̂i,t as policy
correspond to agent ith till trial t as follows:

π̂i,t =

{
πt : i = ourself

argmax Ñi,t(a) : otherwise
, (8)

where in the above equation πt is our internal policy at trial
t, and Ñi,t(a) is the number of repetition selection of action a
by agent i untill trial t. Furthermore, we define πst , selecting
agents policy, in the following way:

πst(x) =
eHst (x)∑N
y=1 e

Hst (y)
, (9)

where in the equation Hst(x) represent preference of social
agent for selecting agent x (including ourself). Using exact
gradient ascent, each agent selection preference,Hst(x), is
incremented proportionally to the increment’s effect on per-
formance :

Hst+1
(x) = Hst(x) + α

∂E[Rt]

∂Hst(x)
. (10)

The increment’s effect is measured by the partial derivative of
expected reward with respect to the selection agent preference.
In our problem, exact gradient ascent cannot be implemented
because we assume we do not know q∗(a). Nevertheless, we
will show that the algorithm’s updates (6) and (10) are the
same in expected value, making it an instance of stochastic
gradient ascent.In order to do this, we start by looking at the
exact performance gradient in more detail:

∂E[Rt]

∂Hst(j)
=

∂

∂Hst(j)
[

N∑
i=1

πst(i)

k∑
a=1

π̂i,t(a)q∗(a)]

=

N∑
i=1

∂πst(i)

∂Hst(j)

k∑
a=1

π̂i,t(a)q∗(a)

=

N∑
i=1

∂πst(i)

∂Hst(j)

k∑
a=1

π̂i,t(a)[q∗(a)−Bt].

In the above formula Bt, called the baseline, is any scalar
that is independent of a and i. We can include a baseline
here without changing the equality since the gradient sums
to zero over all agents,

∑N
i=1

∂πst (i)

∂Hst (j)
= 0. Changing Hst(x)

will cause some agents’ selection probabilities to increase and
others to decrease, but the sum of the changes must be zero
because selection probabilities sum to one. Next we multiply

the equation by
πst(i)

πst(i)
and rearrange the equation:

∂E[Rt]

∂Hst(j)
=

N∑
i=1

πst(i)

k∑
a=1

π̂i,t(a)[q∗(a)−Bt]
∂πst(i)

∂Hst(j)
/πst(i)

= Eπst
[

1

πst(it)

∂πst(it)

∂Hst(j)
(q∗(At)−Bt)]

= Eπst
[

1

πst(it)

∂πst(it)

∂Hst(j)
(Rt − R̂t)],

Here we have chosen the baseline Bt = R̂t, where R̂t is
the mean of all received rewards until trial t and substituted
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Rt for q∗(At) which is permitted because E[Rt|At] = q∗(At).
Now, we should calculate ∂πst(it)/∂Hst(j). Thus:

∂πst(x)

∂Hst(j)
=

∂Hst(x)

∂Hst(j)

∑N
y=1 e

Hst (y) − eHst (x)
∂(
∑N

y=1 e
Hst (y))

∂Hst(j)

(
∑N

y=1 e
Hst (y))2

=
Ix=j eHst (x)

∑N
y=1 e

Hst (y) − eHst (x)eHst (j)

(
∑N

y=1 e
Hst (y))2

=
Ix=j eHst (x)∑N

y=1 e
Hst (y)

−
eHst (x) eHst (j)

(
∑N

y=1 e
Hst (y))2

= Ix=j πst(x)− πst(x)πst(j)

= πst(x) [Ix=j − πst(j)],

where in the above equations Ix=j is defined to be 1 if
x = j, else 0. We intended to write the performance gradient
as something that we can sample on each step, as we have
just done, and then update each step proportionately to the
sample. As a result of substituting a sample from above for
the performance gradient in (10), we get:

Hst+1(x) = Hst(x)+α(Rt− R̂t)(Ix=it−πst(x)), ∀x. (11)

This would be equivalent to our original algorithm (6). We
just demonstrated that the expected update of gradient bandit
algorithms equals the gradient of expected rewards, thus the
algorithm is an example of stochastic gradient ascent. The
algorithm, therefore, has robust convergence properties.

APPENDIX B
THE WORST AGENT FOR SOCIAL LEARNING

The objective of this part is to determine which agents
are the worst agents that can exist in society for our social
agent. In every trial, we updated the preferences of the social
agent about all other agents based on whether other agents
selected the same action as the social agent. Thus, the behavior
policy of other agents in society plays an important role in
the updating process. Consequently, an agent with a uniform
policy would be the worst agent in society, since it would
have the maximum entropy. In other words, our agent has
the greatest uncertainty about the random agents, which have
uniform policies.

APPENDIX C
SENSITIVITY ANALYSIS

In order to do a sensitivity analysis, we plotted the Fig. 7.
In Fig. 7 the difference between the percent of selecting the
best action at the last trial of our method and OUCB is plotted
for different sets of beta1 and beta2. We plotted them in two
2D plots for simplicity of interpretation. As we can see for
a society with one other learner and 100 random agents, our
method performs better for all cases except one in which both
methods perform equally.

Fig. 7. A sensitivity analysis that compares our social learning method to
OUCB with a broader parameter space.
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